Source code for tshirt.pipeline.instrument_specific.jwst_inst_funcs

import numpy as np
import pdb
import warnings

[docs] def ts_wavecal(pixels,tserSim=False, obsFilter='F444W',subarray='SUBGRISM64',grism='GRISM0'): """ Simple analytic wavelength calibration for NIRCam grism time series """ disp = -0.0010035 ## microns per pixel (toward positive X in raw detector pixels, used in pynrc) undevWav = 4.0 ## undeviated wavelength if obsFilter == 'F444W': undevPx = 1096 elif obsFilter == 'F322W2': undevPx = 467 else: raise Exception("Filter {} not available".format(obsFilter)) if tserSim == True: ## fudge factor for wavelength calibration in time series simulation at the shorter wavelengths ## the simulation is slightly off from expectations. In reality we'll want to use wavecal source anyway undevPx = undevPx + 2. if grism != 'GRISM0': raise Exception("Grism {} not available".format(grism)) wavelengths = (pixels - undevPx) * disp + undevWav return wavelengths
[docs] def ts_wavecal_quick_nonlin(pixels,obsFilter='F322W2'): """ Simple inefficient polynomial """ if obsFilter == 'F322W2': x = pixels wavelengths = 2.39610143 + 9.5273e-4 * x + 1.5e-8 * x**2 + -2.89e-12 * x**3 else: raise Exception("Filter {} not available".format(obsFilter)) return wavelengths
[docs] def flight_poly_grismr_nc(pixels,obsFilter='F322W2',detectorPixels=False): """ Flight polynomials for NIRCam GRISMR grism time series Parameters ---------- obsFilter: str NIRCam Observation filter: F322W2 or F444W detectorPixels: bool Are the pixels in detector pixels from raw fitswriter output? This should be False for the MAST products in DMS format """ if detectorPixels == True: x = 2048 - pixels - 1 else: x = pixels if obsFilter == 'F322W2': x0 = 1571. coeff = np.array([ 3.92693691e+00, 9.81165339e-01, 1.66653554e-03, -2.87412352e-03]) xprime = (x - x0)/1000. elif obsFilter == 'F444W': ## need to update once we know where the new F444W position lands x0 = 945 xprime = (x - x0)/1000. coeff = np.array([3.928041104137344 + 0.091033325, 0.979649332832983]) else: raise Exception("Filter {} not available".format(obsFilter)) poly = np.polynomial.Polynomial(coeff) return poly(xprime)
[docs] def ts_grismc_sim(pixels): """ Simple analytic wavelength calibration for Simulated GRISMC data """ disp = 0.0010035 ## microns per pixel (toward positive X in raw detector pixels, used in pynrc) undevWav = 4.0 ## undeviated wavelength undevPx = 1638.33 wavelengths = (pixels - undevPx) * disp + undevWav return wavelengths
[docs] def quick_nirspec_prism(pixels): """ Simple Polynomial fit to the NIRSpec prism Uses the jwst pipeline evaluated at Y=16 on 2022-07-15 """ coeff = np.array([ 3.60978606, 2.78951832, -0.68016157, -0.5927275 , -4.37635904, 11.12545761, 10.26701809, -30.14512184, -7.17013382, 29.26314013, 1.44422269, -9.83708912]) domain = np.array([ 13., 511.]) poly_fun = np.polynomial.Polynomial(coeff,domain=domain) return poly_fun(pixels)
def nirspec_grating(pixels,head): if (head['GRATING'] == 'G395H') & (head['DETECTOR'] == 'NRS1'): coeff = np.array([ 3.02973244e+00, 6.94058590e-01, -2.16013049e-03, -5.00304236e-04]) domain = np.array([ 0., 2047.]) elif (head['GRATING'] == 'G395H') & (head['DETECTOR'] == 'NRS2'): coeff = np.array([ 4.50367630e+00, 6.79386101e-01, -4.68405584e-03, -4.99513645e-04]) domain = np.array([ 0., 2047.]) elif (head['GRATING'] == 'G395M') & (head['DETECTOR'] == 'NRS1'): coeff = np.array([ 3.34261555e+00, 1.84168959e+00, -7.24341224e-04, -1.41509082e-03]) domain = np.array([ 0., 2047.]) else: raise NotImplementedError poly_fun = np.polynomial.Polynomial(coeff,domain=domain) return poly_fun(pixels)
[docs] def miri_lrs(pixels): """ Polynomial fit to transformed Y coordinate ## See this file /Users/~/Documents/jwst/flight_data/proc/01185/wasp69b_proc/miri_lrs_rate/lrs_wavecal.ipynb I ran wcs_step = assign_wcs.AssignWcsStep() Then calculated wavelengths with: xcor,ycor,wavearr = wcs_res.meta.wcs(37 * np.ones(NY),y_array) """ input_arr = np.array(pixels) good_pt = input_arr <= 394. y_transform = np.array((394. - input_arr[good_pt])**0.5) coeff = np.array([-4.33398729e-08, 2.68709385e-06, -4.92122230e-05, -2.30504962e-04, 1.67742638e-02, 3.77253454e-01, 3.80071027e+00]) poly_fun = np.polyval(coeff,y_transform) output_arr = np.zeros(input_arr.size) * np.nan output_arr[good_pt] = poly_fun if (input_arr.ndim == 0): output_arr = output_arr[0] return output_arr